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CHARACTERISTICS AT HIGH SUBSONIC SEl3EIE OF AN UNSWEPT 

WING OF ASPECT R A T I O  5.16 AXD TAPER R A T I O  0.61 . 

By H . Nomm Silvers and Kenneth P. Spreemaan 

An investigation of the effect of two wing sections and a t i p  tank 
on the aerodynamic characteristics of a rigid unswept w i n g  was  made in  
the Langley high-speed 7- by 10-foot  tunnel over a Mach number range 
extending frcm 0.60 t o  0.90. 

Analysis of the results indicates that a i r f o i l  -section had an 
appreciable  effect on the aerodynamric-center location of the wing, that 
the  trailing-edge angle of the a i r f o i l  sectionwas a prhcipal  factor 
i n  controlling this effect  at high subsonic Mach numbers, that the t i p  
tank produced lese  than 1.5-percent change in the  aerodpmic-center 
location of the wfng regardlese of airfoil section, that the  effective 
aspect ra t io  change poduced by t h e  end-plate  effect of the t i p  tank 
was appreciably larger when the gap between the tsnk and wing was 
sealed, and that the  unstable  pitching mament of the tank about a point 
locaked at  40 percent of the wing-tip chord was neutralized by a hori- 
zontal tank f i n  which WBB 23 percent of the Wojected  area of the tank. 

The behavior of auxiliary fuel tanks mounted at   the t i p s  of straight 
wings is w e l l  established  (referenee 1) in the  region of speeds where 
cmpressibility and aeroelastic  effects are of secondary importance- 
As the speeds of a i r c r a f t  increase, hcswenr, cmpese ib i l i ty  and aero- 
elasticity becaw of major importance even on a wing without  a t i p  tank 
80 that  the  necessity for obtaining  informatian on the  effect of t i p -  
mounted tanks at  high speeds is apparent. 



2 

The resul ts  presented i n  this paper were obtained in the Langley 
high-speed 7- by 10-foot  tunnel and include data  obtained on two identical 
wing plan f o r m  having different airfoil sections, with and without a t i p  
tank, over a Mach number range frcm 0.60 t o  0.90. Also aham are the 
effects of  two modifications t o  the  trail ing portion of me of the  airfoil  
sections.  Modifications t o  the  basic p o f i l e  were  accamplished by 
extending the w i n g  trailing edge* The lift; and pitching-mment  coef- 
f icients of the tank alme ln the presence of the rigid-unewept-wing 
model are included in the resul ts  presented.  Pitching maments of the 
tank alone are presented about the 40-percent-tip-chord poFnt which is 
considered  representative of the elastic-axis  locatian of a flexible wing. 
The effect of hmizontal tank stabilizing fine on the propertiee of the 
tank a l m e  in pireeence ,of the wing are shown. 

The coefficients and symbols referred t o  in this paper are defined 
as follows: 

pitching-mament coefficient, referred to the 0.25 (original 
plan form) (Twice panel pitching moment/qs) 

drag coefficient (Twice panel &ag/q~) 

maximum r a t io  of lift t o  drag 

Mach nuuiber (V/a) 

Reynolds number (pV</p) 

dynamic pressure, pound8 per square foot -pV e 3  
mass density of air, sluga per cubic foot 

velocity of e, feet per second- 

absolute  viscosity, pound-secmda per s q k e  foot 

veilocity of sound, feet per second 

twice  panel area of semispan model (see table I) 

f 
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- 
C mean aer &c chard (see  table r) 
C chord, inches 

A . aspect  ratio, b2/S 

b  twice pan& span of emispan model (16.44 in. ) 

U 8ngle of attack of the wing chard l i ne  

6 trailing-edge  angle, degrees (included an@ between  upper  and 
lower surfaces  at   last  5 percent of chord) 

ratio of area of fin to projected area of tank 

Subscripts: 

f f in  

t tank 

Force and mament msasuramsnts  were made with a strain-gage  balance 
mounted on a w a l l  of the Langley high-speed 7- by 10-foot  tunnel and 
sealed t o  prevent leakage of air   into the flow f ie ld  of the model. A 
drawing of the test setup with the models of the wing with  the t i p  tank 
i n  place is presented in figure 1. Surveys have indicated  that w a l l  
boundary-layer effects may be eliminated br Itxating  the  test model 
approximately 3 inches fYm the  tmnel w a l l .  A t  this loca t im a boundary- 
layer  plate was installed by a  sealed fairing through which extended the 
strain-gage-balance m o d e l  auppart  bracket. A Rma17 end plate w a s  added 
t o  the w i n g  root a t  a  distance of 1/32 of an inch frcan  the boundary-layer 
plate t o  cover the unparted area of the boundary-layer plate around the 
model support  bracket and t o  minimize the  interference  effects of the 
Bmall boimdary layer built  up Over the boundary-lager plate- Leakage 
around the root  chord of the wing wae minimized bg seal ing the balance 
and the support fairing and maintaining the m a l l e e t  practical  clearance 
between boundary-layeP plate and the wing end plate. 

Two Bmau alwninum semispan KIngs of identical plan form but of 
differing airfoil sectim  (referred t o  herein  as  section A which waa an 
NACA 65-210 profile and section B which was similar t o  an NACA q - 2 1 2  
profile) were  used in this investigation. The .aspect r a t io  of the 
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original plan form was 5.16 and the taper ratio,  0.61. The ordinates of 
ea.ch of the two airfoil  sections, a l m g  with a sketch of the  profile shapes, * 
are presented in  table II. Modificatiom made t o  section B are shown 
in  figure 2. Modification 1 was  made  by extending the t ra i l ing edge of 
the chord 3 percent and accentuating the trailing-edge cuap af t  of  the 
80-percent-chord point.  Modification 2 w a 8  a flat-sided  addition  to  the 
wfng  a f t  of the 75-percent-chord point that w-a~ &-percent -chord thick  at  
the  trail ing edge of the baeic wing section and represented a 3-4-percent- 
chord extensim  at the root and a 'j.3-percent-chord extension at   the   t ip .  
The t ra i l ing edge of modification 2 was a samicircular form. The trail ing- 
edge -ea of section B with modifications 1 and 2 were designed t o  
approach the  trailing-edge angle of section A ($d = 7000~) a Presented in  
table I are pr t inen t  geametric characteristic8 of the w i n g  with modi- 
fications t o  section B. 

A drawing of the tank tested  a t   the   t ip  of the wing with section8 A 
and B, along with the ordinate8 defining the tank &ape, i s  presented 

[: = 0.232) tank stabilizing fins. Photogra@u of the t i p  tank on the 

wing are presented in figure 4. The l i f t  and pitching m w n t  of the tank 
i n  the presence of the t i p  of  the wing with section A were measured a t  
the 40-percent-tip-chord  point which wae considered  representative of 
the  elastic axis of a flexible wing by a two-elament strain-gage beam 
(see Zig. 4( a) ) that WBB the s u p w i n g  link between the wing t i p  and 
the tank. 

Tests were made i n  the Langley high-speed 7- by 10-foot tunnel over 
a Mach  number range that generally extended from 0.60 t o  0.90 a t  angles 
of attack frcm -2O t o  80. W i n g  section B with modification 1 was tested 
over an extended Mach range (f'rm 0.20 to 0.90). LIFt;, drag, and 
pitching-mmnt  coefffcients w e r e  measured for the wiq with sections A 
and B without tank and with  the tank (gap open and eealed) at the w i n g  
t ip;  fo r  section B with two modification8 t o  the wing section  including - 
roughness over the wing lea- edge extending aFt 10 percent chord; 
and for two sizes of horizontal tank &abiliZin@: fins on the wing with 
section A. L i f t  and pitching mment of the   t ip  tank in  the presence of 
the wing with section A were obtained for the tank alone and for the 
tank with fins. 

. 
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Test Mach numbers wae obtained f r a m  a calibration of the air 
velocity on the b o u r n - l a y e r   p l a t e  without a model i n  place. A survey 
in  the plane of the model span ahuwed that  the  spaarise Mach number 
gradient wae negligibly Bmall. 

The test   results were not corrected for jet-boundary effects because 
the  tunnel test   sectian w a 8  very large cmpred  t o  the size of the  test  
models. For this reaeon blockage effects of the  mdele on the dynamic 
pressure were also negligible. The effect of the support fairing and 
boundary-layer plate on blocking was accounted for in t;he calibration of 
air velocity. The choking Mach number of  the  test   section  in  this  investi-  
gation w a s  considerably  higher  than the  highest  test Mach nmiber. 

The tes t  Reynolds nranber over a Mach nuniber range *can 0.20 t o  0.90 
is presented in figure 5. The solid curve represents  the mean Reynolds 
number with the range of departures frm the mean, occasioned by aimos- 
pheric  conatione,  repesented by the croee-hatched region. 

L 

RESULTS 

The results of the  investigation are pre~ented in the f o l l a r i n g  
figures : 

L i f t - d r a g  ratios: 
Effect of t i p  tank, section A = 9 
Effect of t i p  tank and modifications,  section B - 10 

Effect of Mach  number on the  aerodpmdc  characteristics: 
Wing with section A and t i3 tank . I . . ll 
Wing with section B, t i p  tank and 

trailing-edge  modlficatiom . . . . . . . . . . . . . . . .  12 

The coefficients of force and mamsnt presented in t h i s  paper are 
based on the  area of the basic wing plan fm except for the  results of 
section B with modificatiom where the  coefficiants are based on the 
modified w i n g  area- (See table ,I.> The pojected  area of the t i p  tmk 

. 
* or the tank fine w a s  not  included i n  the area of the model for tank-on 
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tes ts .  Pitching-mcanent coefficienta  presented  herein  are  presented about 
the quarter-chord  point of  the man aerodynamic  chord  of the unmodified 
wing plan form. 

The l i f t  and pitchlngmament coefficient6 of the tank in  the presence 
of the wing with section A are based on the area of the original wing 
plan form of the wing with  section A with the maments being  presented. 
about the 40-percent-chord point of the t i p  chord. 

The slope of pitchbg-mment  coefficient BB a function of l i f t  coef- 
f ic ient   a t  constant Mach number (a",/a%>, and l i f t  coefficient  as a 

function of w e ,  of attack at conetant Mach nmber- (a+& were 
generally meetsked through CL = 0. where nanlinearitiles of the curves 
occurred at zero lif't, average sloyes were taken a t  CL = 0.1 over a 
range that generally extended f r a m  % z 0 t o  0, 0.2. 

The drag coefficients presented  herein  include the drag of the wing 
end plate. 

DISCUSSION 

Effect of Original Air fo i l  Sectiona 

The parameter (%/%) is a meaaure of the aerodynamic-center 
M 

location  relative t o  the  quarter-chard  point of the mean aerodynamic 
chord. A t  the lowest Mach  number tested, M = 0.60, the aerodynamic 
center of  the wing dth section B (.section similar t o  NACA 661-212) i a  
approximately 7.3 percent forward of the aerodynamic center of the wing 
with section A ( I W A  65-210) (ftgs. 11 and 12) AB the Mach  number 
increases,  the aerodynamfc center of  section B moves farther forward 
while the aerodgnamic center of section A ramaim relatively  constant 
t o  M = 0.83, whereupon it moves -eharply aft;. A t  M = 0.85 the aero- 
dynamic center of section B l e  about 16.5 percent ahead of the aero- 
dynamic center of section A or about 1 4  percent ahead of the quarter- 
chord point. 

A preliminsry examination  of the pitching-ruoment characteristics of 
a number of airfoil  sections made i n  reference 2 revealed that a l r f o i l  
sections with large trailing-edge angles had  aerodynamic-center locations 
considerably forward of those with mall trailing-edge w e e D  It is t o  
be noted that  section B, which haa an aerodynamic center forward of that 
of section A, has a trailing-edge  angle approximately 2.5 times greater 
than  section A. 
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The drag coefficient of sec t im B is about 0.0020 higher over the 
Mach  number range than that of section A at zero lift;, and the drag 
break Mach nmiber is slightly lower (figs. ll and 12) AB the lift coef - 
ficient i s  increased,  the drag of section B increases more rapidly than 
does that of sectian A. (See figs. 6 and 7.)  

The poorer drag characterietics of the wing with section B 8re 
reflected d i r e c t l y  in the  lift-drag  ratios. It is seen that  section B 

(figs. XI. and 12).  
an ( L / D ) ~ ~  ap-pnatmately 10 percent lower than  that of eection A 

The lift-curve dope of section B is lower than that of section A 
with the reduction generally increasing as the Mach nllpiber is increased 
until. (%/h>, of section B is only about 65 percent of (%/h)~  
of section A at the  highest Mach rimer investigated (M = 0.90) (See 
figs. u and 12.) 

It is cautioned, however, that a quantitative  spylication of these 
data t o  eimilar profiles at larger scale is attended bg same riak 
because of the  smceptibil i ty of the  separation @enmenan involved in 
Reynolds nmiber effects- 

Effeot of Modifications t o  Section B 

In an effor t   to  move the aerodynamic center of section B as far aft 
as possible and still maintain a practical airfoil section, two modifi- 
cations designed t o  decrease the  trailing-edge angle were made t o  the aft 
pa r t  of the  original &foil section. The largest rearward movement 
produced by either of the modifications w a s  of the order of 2 percent 
mean aerodynamic chord at Mach  numbers below force break. Both m o d i f i -  
cations .were effective,  hmever, in producing a n d  rearward movement 
of the aerodynamic center with Mach number above f a c e  break (fig. 12(a) ) . 

Modifying the  trailing edge of sectionB  resulted in notable 
increases in  drag coefficient,  particularly at the high lift coefficients 
(fig* 7 0 )  1 

The effect of exten- the Mach nmber range t o  M = 0.20 and 
thus lowering the t e s t  Reynolds  number and, in addition, adding leading- 
edge roue;hnees t o  sectioq B with modiffcatfan 1 (accentuated cusp 
t r a i l i ng  edge) is included in theae data (fig.  12(a) ) Reduction of 
the   tes t  Reynolds nmber results i n  a r e m d  movement of the aero- 
dynamic center of 2 yercent,  but leading-edge roughnes~ has a Bmall effect 
on the  aerodpdc-center  location. Leading-edge roughness does, however, 
produce a large increase in drag coefficient. 
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Effect of Tip T a s k  

The maximum change in the aerodynamic-center location of  sections A 
and B caused by adding a t i p  tank with t8nk gap open OT sealed is a 
farward movem.ent of about 1 5 percent mean aerodynsrmic chord below force 
break (figs.   U(a) and 12(b)) 

The drag characteristics of the w i n g - t a n k  ccmibination with tank 
gap open and either airfoil section at zero lift coefficient  as a 
function of Mach number &m that the tank lowers the force-break Mach 
number about 0.02, and, at  the  force break M of  the w i n g - t a n k  ccanbi- 
nation (M = 0.77), the drag contribution of the t i p  tank is about 40 per- 
cent of the drag of the King with section A and about 38 percent of the 
drag of the w i n g  with section Bo A t  the lowest test Mach  number (M = 0.60) 
the drag increment  of the   t ip  tank is, in coefficient farm, about 0.0030. 
Below force-break Mach  nllpiber sealing the tank gap does not have any 
appreciable  effect on the drag characteristics of the instal la t ion  a t  
zero lift of.the model. The difference in force-break characteristics 
ahown far the tank on the t i p  of the wing w i t h  sections A and B may  be 
attr ibuted  to juncture  effects. 

The incream In the effective aepect ra t io  of the w i n g  produced by 
the end-plate effect of the t i p  tank (see  reference 1) resul ts  i n  
reduced drag coefficients at the higher lift coefficients. The reduction 
is such that the drag added by the t i p  tank is largely negated at lift 
coefficients of about 0.4 to 0.3 at the lower Mach numbers (figs.  6(a) 
and 7(a) ) with the most effective  end-plate  action and hence the lowest 
drag coefficients being produced-with the tank gap sealed. 

The im-ance of sealing the tank gap is i l lus t ra ted   in  figures 9, 
-10, U(a>  and 12(b) by the  large  increaees in (L/D)- that  are 

obtained, particularly on section A. 

Became of the increased  effective  aepect  ratio,  the  lift-curve 
dope of the wing with both  sections and the t i p  tank wae on an average 
of 12  percent hi&r than the lift-curve slope of the w i n g  alone. Sealing 
the tank gap increaeed (&&), a t  the lower Mach  numbers, but this 
increase is less than the contributions of the  baeic t i p  tank- 

The results of t e s t s  of two sizes of horizontal 
on the tank on the w i n g  with bectfon A ehaw that the emall 

moves the aerodynmic ccpnbinatian aft  about 2.5 per- 

cent, while the  large has apgraximately 2.5 times I 

more area  than  the Ermall fin, movea the aerodynanic center aft - 
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about 5 percent (fig- U ( b )  ) Thw, per unit area the  greatest 
stabilizing  influence is exerted by a  horizontal fin whose chord is large 
compared t o  the span. However, the   me of horizontal f i n s  of this type 
on t i p  tanks may prove costly  to the perfmmmce of the  airplane becauee 
of the f l o w  s e p r a t f m  over the fin in the  rotational  f ield at the wing 
t i p ,  and, consequently higher drag. It is cautioned, however, that 
results involving the phenmnon of flow separation,  particularly flow 
separation from a low-aspe.ct-ratio f la t  plate such aa the  horizontal 
fins, are  susceptible t o  Remolds nuuiber effects. Hence, sFmllarly large 
drag increases may not be observed at lsrger scales- 

Characteristics of the Tfp Tank in the Presence of the W i n g  

The t i p  tank without horizontal f ins  is Metable about the 40-percent- 
tip-chord point of the wing with secticm A (fig. 8) The 4-0-percent-tip- 
chord p i n t  is canaidered repesentative of the  location of the elast ic  
axis of a flexible wing. To stabilize the tank, a horizontal fin of 
about 23 percent of the  projected  area of the tank is  required. The . 
nonlinearity of the tank p€tching mnmant with the  large fin is in sub- 
stantial  agreement with hypothesis of flow separation over the  horizontal 
fins. Because of the -tude  of the  coefficients involved, a more 
exact definition of the  lift-coefficient range over dch the  horizontal 
fins are  subject t o  flow sepazation may be obtained from the tank 
pitching-mcmnt coefficients. Below a w i q  lift coefficient of about 0.10 
the  stabilizing  influence of the lmge horizmtal f in is largely negated 
by separation. Flaw separation frcm the mall. horizontal f in  is less 
severe, and  seams t o  occw at a e&at higher lift coefficient. 

Analysis of the  reeults of an experimental investigation of the 
effect of two wing aecticxns and a t i p  tank on the aer@namic character- 
i s t i c s  of a sedspan unawept wing of aspect ratio 5-16 and taper  
r a t i o  0.6.l at high subamic speeds indicates that: 

1 Below force-break Mach  number the wing d t h  a section similar 
t o  NACA 661-212 gave a 10 percent lower mxfmum l if t-drag ratio, an 
apprec iab le . lmer   l i f t -cme slope, and an aerodynamic-center lmat ion 
7.5 percent farther forward than the wfng with an IUCA 65430 eection. 
Above force break the aerodynamic characteristics of the wing with a 
secticm similar t o  an RACA %-212 section c w e d  even less favorably . 
with those of the w3n& with XACA 65-210 section. 



2. Two trail%-edge  modifications, designed t o  reduce the  trailing- 
edge angle of the  section which waa sirnilax t o  the NACA 64-212 section, 
moved the  aeroQnmic  center of the wing apgreciably  rearward particularly 
above 'force break. 

3. Locating a tank a t  the t i p  of  the wing resulted  in a forward 
movement o f .  the  aerodpamic  center of the wing of less than 1.5 percent, 
reduced the Mach  ntmiber for force break slightlyt and at zero l i f t  
resulted in a 48-percent increaee in drag coefficient of the w i n g  alone 
with the NACA 65-210 section and a 38-percent increase i n  the drag coef- 
f icient of the Xing with a section similar t o  the mACA G1-212 section. 

4. The increase in effective Bspect ra t io  produced by the  end-plate 
effect of the   t ip  tank waa appreciably larger when the gap  between the 
tank and wing w a s  sealed. 

5. A horizontal tank fin which waa 23 percent of the  projected  area 
of the  tank  neutralized the unstable  pitching mament of the tank about 
the 40-percent-tip-chmd  point of the ~ 3 %  with the NACA 63-uo  section. 

Langley Aeronautical  Laboratmy 
Natimal Advisorg Coamnittee for Aeronautics 

Langley Air Farce Base, Va. 

2 Polhamw, Edward C. : Preliminary Correlation of the Effect of 
Compreeeibility on the Locaticm of the Section Aerodynamic Center 
at  Subcritical Speeds. NACA RM L8Dl4, 1948. 

. 
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Wing sectkm A (NACA 65-2@ 
(Stations and ordinat 

Upper suiface Lower surface 
Station lordinate Station IOrdinate 

thru L.E ,  .'. 0.084. 
CA = 7.00" 

es in percent 
Wing section 8 

of wing chord) 



Lhndary-byer plate fairing 

S a f e  - hches 

Fgbre 1 -Dr+ o f  test &Is with tip tank attached. 
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Figure 2.- Trailing-edge modifications tested on the wing with sectlbn 6. 
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I : Tank ordinates 
Percent tank length J 
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-0.43 

- 
Figure 5- Fuel tanh end fins tested. 
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(a) W i n g  vlth eection A. z-60285 

Figure 4. -  Photograph of the t ee t  model with the  tip-tank mounted on the boundary-layer plate. - 5 

. .. . . .  
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(b) Wing with section B. 

Figure 4.- Concluded. L- 602 86 
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Mean test Reynolds number 
YXXXXX>( Limits of test Reynolds number: 
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with sections A ond0  in  the Langley high- speed 7-by l O - f d  funnel. 
Figure 5.- Variation of Reynolds num&er with # a h  number for wing 
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Figure 9 - Effecf o f  a t i p m n t e d  auxi1ht-y fuel tank on the lift-drug mth of 
the wing with section A .  
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